

Max Marks: 60

Date: 10.09.2022

ARJUNA BATCH CHEMISTRY: DCT Topic: Alcohols, Phenols and Ethers

1. $C_2H_4O(A)$ reacts with CH_3 MgBr followed by decomposition with H_3O^{\oplus} to give 2° alcohol. Thus, A is

(a) $CH_2 = CHOH$ (b) CH_3CHO (c) $CH_2 - CH_2$ (d) None of these

2. Boiling point of $CH_3CH_2OH(351 \text{ K})$ is much higher than that of isomeric ether $(CH_3)_2O(248 \text{ K})$. This indicates.

(a) hydrogen bonds are much stronger intermolecular attractions than dipole-dipole attractions.

(b) dipole-dipole attractions are much stronger than hydrogen bonds.

(c) $(CH_3)_2$ O has two hydrophobic groups while CH_3CH_2OH has one.

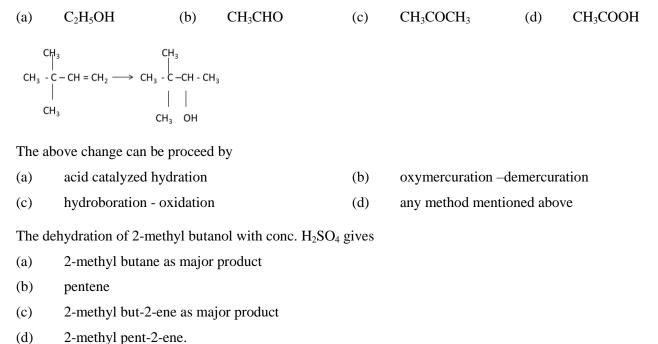
(B)

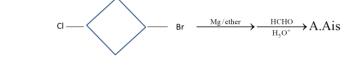
- (d) $(CH_3)_2O$ has two hydrophilic groups while CH_3CH_2OH has one
- 3. In the following sequence of reactions.

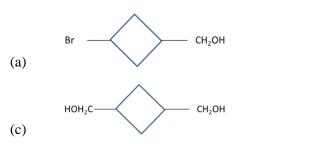
$$CH_{3}CH_{2}OH \xrightarrow{P+I_{2}} A \xrightarrow{Mg} B \xrightarrow{HCHO} C \xrightarrow{H_{2O}} D.$$

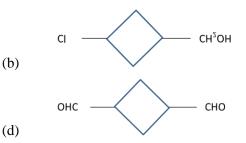
The compound 'D' is

- (a) butanal (b) n-butyl alcohol (c) n-propyl alcohol (d) propanal
- 4. Which of the following statement is correct for the following dehydration of alcohol(A) leading to the formation of styrene (B)?


$$\begin{array}{c|c} & & H^+ \\ & & -H_2O \end{array} \end{array} \xrightarrow{H^+} CH = CH_2$$


- (A)
- (a) Intermediate is carbocation
- (b) Carbocation is resonance stabilised
- (c) It takes placed rapidly
- (d) All above statements are correct.


Space for Rough Work



5. An organic compound X on treatment with pyridinium chloro chromate in dichloromethane gives compound Y. Compound Y, reacts with I2 and alkali to form triiodomethane. The compound X is

Space for Rough Work

(b)

6.

7.

8.

9. Phenol is heated with a solution of mixture of KBr and KBrO₃. The major product obtained in the above reaction is

(b)

3-bromophenol

2,4,6-tribromophenol

- (a) 2-bromophenol
- (c) 4- bromophenol (d)
- 10. Chlorobenzene $\xrightarrow{\text{Reaction}}_{X}$ Phenol $\xrightarrow{\text{Reaction}}_{Y}$

Salicylaldehyde X and Y reactions respectively are

- (a) Fries rearrangement and Kolbe-Schmidt
- (b) Cumene and Reimer-Tiemann
- (c) Dow and Reimer-Tiemann
- (d) Dow and Friedel-Craft
- 11. Dehydration of alcohols,

Will be in the order

 $(a) \qquad I < II < III < IV \qquad (b) \qquad I > II > III > IV \qquad (c) \qquad III < II < IV \qquad (d) \qquad II < III < IV < I$

- 12. One mole of an organic compound A with the formula C_3H_8O reacts completely with two moles of Hl to form X and Y. When Y is boiled with aqueous alkali it forms Z. Z answers the iodoform test. The compound A is
 - (a) propane-2-ol (b) propane-1-ol (c) ethoxyethane (d) methoxyethane

Space for Rough Work

- An organic compound containing C, H and O gives red colouration with sodium nitroprusside solution but does not reduce Tollen's reagent an yields chloroform on treating with NaOH and Cl₂. The compound is

(a)
$$CH_3CH_2OH$$
 (b) CH_3COCH_3 (d) $(CH_3)_3CH$ - CHO

- 14. Which of the following compounds when heated with CO at 150°C and 500 atm pressure in presence of BF_3 forms ethyl propionate?
 - (a) C_2H_5OH (b) CH_3OCH_3 (c) $C_2H_5OC_2H_5$ (d) $CH_3OC_2H_5$
- 15. Phenol on treatment with conc. HNO₃ gives
 - (a) picric acid (b) styphinic acid (c) Both a. and b (d) None of theses.

* * * * *

Space for Rough Work

PART-A [SINGLE CORRECT CHOICE TYPE]

Q.1 to Q.7 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct.

- Q.1 If the coefficients of x^3 and x^4 in the expansion of $(1 + ax + bx^2)(1 2x)^{18}$ in powers of x are both zero, then (a, b) is equal to
 - $(A)\left(16,\frac{272}{3}\right) \qquad (B)\left(16,\frac{251}{3}\right) \qquad (C)\left(14,\frac{251}{3}\right) \qquad (D)\left(14,\frac{272}{3}\right)$

Q.2 The sum of coefficients of integral powers of x in the binomial expansion of $(1 - 2\sqrt{x})^{50}$ is

(A) $\frac{1}{2} (3^{50} - 1)$ (B) $\frac{1}{2} (2^{50} + 1)$ (C) $\frac{1}{2} (3^{50} + 1)$ (D) $\frac{1}{2} (3^{50})$

Q.3 If the number of terms in the expansion of $\left(1 - \frac{2}{x} + \frac{4}{x^2}\right)^n$, $x \neq 0$, is 28, then the sum of the coefficients of all the terms in this expansion, is (A) 729 (B) 64 (C) 2187 (D) 243

Q.4 The value of $({}^{21}C_1 - {}^{10}C_1) + ({}^{21}C_2 - {}^{10}C_2) + ({}^{21}C_3 - {}^{10}C_3) + ({}^{21}C_4 - {}^{10}C_4) + \dots + ({}^{21}C_{10} - {}^{10}C_{10})$ is (A) $2^{21} - 2^{11}$ (B) $2^{21} - 2^{10}$ (C) $2^{20} - 2^{9}$ (D) $2^{20} - 2^{10}$

Q.5. $\int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}} dx \text{ is equal to}$ (A) $\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^2} + C$ (B) $\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^3} + C$ (C) $\frac{\sqrt{2x^4 - 2x^2 + 1}}{x} + C$ (D) $\frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + C$

Q.6 Let
$$f(x) = \frac{x}{(1+x^n)^{l/n}}$$
 for $n \ge 2$ and $g(x) = \underbrace{\left(f \circ f \circ \dots \circ f\right)}_{f \text{ occurs } n \text{ times}}(x)$. Then $\int x^{n-2}g(x) \, dx$ equals

(A)
$$\frac{1}{n(n-1)} (1+nx^n)^{1-\frac{1}{n}} + K$$
 (B) $\frac{1}{(n-1)} (1+nx^n)^{1-\frac{1}{n}} + K$
(C) $\frac{1}{n(n+1)} (1+nx^n)^{1+\frac{1}{n}} + K$ (D) $\frac{1}{(n+1)} (1+nx^n)^{1+\frac{1}{n}} + K$

Q.7 Let I =
$$\int \frac{e^x}{e^{4x} + e^{2x} + 1} dx$$
, J = $\int \frac{e^{-x}}{e^{-4x} + e^{-2x} + 1} dx$

Then, for an arbitrary constant C, the value of J-I equals

(A)
$$\frac{1}{2}ln\left(\frac{e^{4x}-e^{2x}+1}{e^{4x}+e^{2x}+1}\right) + C$$
 (B) $\frac{1}{2}ln\left(\frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1}\right) + C$
(C) $\frac{1}{2}ln\left(\frac{e^{2x}-e^{x}+1}{e^{2x}+e^{x}+1}\right) + C$ (D) $\frac{1}{2}ln\left(\frac{e^{4x}+e^{2x}+1}{e^{4x}-e^{2x}+1}\right) + C$

PART-B [MATCHING LIST TYPE]

Q.8 is Matching List type questions. Each question has matching lists. Write your Answer

Q.8 Let
$$I = \int \frac{e^{x}}{e^{4x} + 1} dx$$
 and $J = \int \frac{e^{-x}}{e^{-4x} + 1} dx$
Then for any arbitrary constant C, match the following
Column-I Column-II
(A) I (P) $\frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{e^{2x} - 1}{\sqrt{2}e^{x}} \right) + C$
(B) $J + I$ (Q) $\frac{1}{2\sqrt{2}} ln \left(\frac{e^{2x} - \sqrt{2}e^{x} + 1}{e^{2x} + \sqrt{2}e^{x} + 1} \right) + C$
(C) $J - I$ (R)
 $\frac{1}{2\sqrt{2}} \left(\tan^{-1} \left(\frac{e^{2x} - 1}{\sqrt{2}e^{x}} \right) - \frac{1}{2} ln \left(\frac{e^{2x} - \sqrt{2}e^{x} + 1}{e^{2x} + \sqrt{2}e^{x} + 1} \right) \right) + C$
(S)
 $\frac{1}{2\sqrt{2}} \left(\tan^{-1} \left(\frac{e^{2x} - 1}{\sqrt{2}e^{x}} \right) + \frac{1}{2} ln \left(\frac{e^{2x} - \sqrt{2}e^{x} + 1}{e^{2x} + \sqrt{2}e^{x} + 1} \right) \right) + C$

[INTEGER TYPE]

Q.9 to Q.15 are "Integer Type" questions. (The answer to each of the questions are single digits)

Q.9 If f and g are two real valued functions differentiable over R such that $f'(x) = g(x) + \frac{x}{f(x)}$ and

$$g'(x) + f(x) = \frac{x}{g(x)}$$
. If $f(1) = 1$ and $g(1) = \sqrt{2}$, then find the value of $f^2(2) + g^2(2)$.

Q.10 If $\int \frac{(2x+3)}{x(x+1)(x+2)(x+3)+1} dx = k - \frac{1}{f(x)}$ where f(x) is of the form $ax^2 + bx + c$, then find the value of (a+b+c).

Q..11 If
$$I_n = \int \frac{e^{(n+1)x} dx}{\left(1 + e^x + \frac{e^{2x}}{2!} + \dots + \frac{e^{nx}}{n!}\right)} = \lambda_n \left(e^x - ln(f_n(x))\right) + C$$

where $f_n(0) = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ and C is constant of integration and $g(x) = \underset{n \to \infty}{\text{Lim}} ln(f_n(x))$,
then find the number of real solutions of the equation $g(x) = 4x^2$.

Q.12 Let
$$f(x) = \frac{1}{e^x + 8e^{-x} + 4e^{-3x}}$$
 and $g(x) = \frac{1}{e^{3x} + 8e^x + 4e^{-x}}$. If $\int (f(x) - 2g(x)) dx = h(x) + c$,

where c is constant of integration and $\lim_{x\to\infty} h(x) = \frac{\pi}{4}$, then find the value of $2 \tan(2h(0))$.

Q.13 If f(x) is twice differentiable function from $R \rightarrow R$ such that $t^2 f(x) - 2t f'(x) + f''(x) = 0$ has two

equal values of t for all x and f(0) = 1, f'(0) = 2, then find the value of $\left[\lim_{x \to 0} \left(\frac{f(x) - 1}{2x} \right)^{\frac{1}{x}} \right]$.

[Note: [k] denotes greatest integer function.]

- Q.14 If coefficient of x^{19} in $\sum_{r=0}^{20} (r+1) (x+3)^{20-r} (x+2)^r$ is equal to $(m \cdot {}^{22}C_n)$ where $m, n \in \mathbb{N}$ and n < 10 then find the least value of (m+n).
- Q.15 When $(3x+5)^{100}$ is expanded, find the largest power of 2 dividing the coefficient of x^{39} .

Max Marks: 60

Date: 10.09.2022

ARJUNA BATCH CHEMISTRY: DCT ANSWER KEY Topic: Alcohols, Phenols and Ethers.

1.	(b)	2.	(a)	3.	(c)	4.	(d)	5.	(a)
6.	(b)	7.	(a)	8.	(b)	9.	(d)	10.	(c)
11.	(c)	12.	(d)	13.	(c)	14.	(c)	15.	(a)

Max Marks: 60

Date: 10.09.2022

ARJUNA BATCH MATHEMATICS : DCT ANSWER KEY Topic: Indefinite Integration

16.	(a)	17.	(c)	18.	(Bonus)	19.	(d)	20.	(d)
21.	(a)	22.	(c)	23.	(A-R,B- P,C-Q)	24.	(9)	25.	(5)
26.	(3)	27.	(3)	28.	(2)	29.	(10)	30.	(006)